
Lightning Talk: The C++11 Memory Model
Meeting C++ 2012
Neuss, Germany

Presented by Marc Mutz

Produced by Klarälvdalens Datakonsult AB

Material based on N3337, created on November 10, 2012



Module: The C++11 Memory Model

The C++11 Memory Model 2/13



C++11 Multithreaded Execution Guarantees
• C++11 is the first C++ standard to mention multithreading.
• Only minimal progress guarantees are given:

• Unblocked threads should “eventually make progress”.
• Implementations should ensure that writes in one thread

become visible to other threads “in a finite amount of time”.

The C++11 Memory Model 3/13



The C++11 MemoryˆWConsistency Model

• Strict Consistency
• requires global clock
• too strict for the real world

• Sequential Consistency
• L. Lamport, 1978: “The result of any execution is the same as if

the operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.”

• IOW: Threads are executed as if thread steps were just
interleaved.

The C++11 Memory Model 4/13



Dekker’s Example

• Scenario (initally x = y = 0):
Thread A Thread B

x = 1;
r1 = y;

y = 1;
r2 = x;

• SC analysis:
x = 1; r1 = y; y = 1; r2 = x; // r1==0; r2==1
x = 1; y = 1; r1 = y; r2 = x; // r1==1; r2==1
x = 1; y = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; r2 = x; x = 1; r1 = y; // r1==1; r2==0
y = 1; x = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; x = 1; r1 = y; r2 = x; // r1==1; r2==1

⇒{r1 = 0}∩{r2 = 0}= /0
• But happens all the time on real hardware!
• Solution: “Sequential Consistency for Data-Race-Free

Programs” (Boehm)

The C++11 Memory Model 5/13



Dekker’s Example

• Scenario (initally x = y = 0):
Thread A Thread B

x = 1;
r1 = y;

y = 1;
r2 = x;

• SC analysis:
x = 1; r1 = y; y = 1; r2 = x; // r1==0; r2==1
x = 1; y = 1; r1 = y; r2 = x; // r1==1; r2==1
x = 1; y = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; r2 = x; x = 1; r1 = y; // r1==1; r2==0
y = 1; x = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; x = 1; r1 = y; r2 = x; // r1==1; r2==1

⇒{r1 = 0}∩{r2 = 0}= /0
• But happens all the time on real hardware!
• Solution: “Sequential Consistency for Data-Race-Free

Programs” (Boehm)

The C++11 Memory Model 5/13



Dekker’s Example

• Scenario (initally x = y = 0):
Thread A Thread B

x = 1;
r1 = y;

y = 1;
r2 = x;

• SC analysis:
x = 1; r1 = y; y = 1; r2 = x; // r1==0; r2==1
x = 1; y = 1; r1 = y; r2 = x; // r1==1; r2==1
x = 1; y = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; r2 = x; x = 1; r1 = y; // r1==1; r2==0
y = 1; x = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; x = 1; r1 = y; r2 = x; // r1==1; r2==1

⇒{r1 = 0}∩{r2 = 0}= /0
• But happens all the time on real hardware!
• Solution: “Sequential Consistency for Data-Race-Free

Programs” (Boehm)

The C++11 Memory Model 5/13



Dekker’s Example

• Scenario (initally x = y = 0):
Thread A Thread B

x = 1;
r1 = y;

y = 1;
r2 = x;

• SC analysis:
x = 1; r1 = y; y = 1; r2 = x; // r1==0; r2==1
x = 1; y = 1; r1 = y; r2 = x; // r1==1; r2==1
x = 1; y = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; r2 = x; x = 1; r1 = y; // r1==1; r2==0
y = 1; x = 1; r2 = x; r1 = y; // r1==1; r2==1
y = 1; x = 1; r1 = y; r2 = x; // r1==1; r2==1

⇒{r1 = 0}∩{r2 = 0}= /0
• But happens all the time on real hardware!
• Solution: “Sequential Consistency for Data-Race-Free

Programs” (Boehm)

The C++11 Memory Model 5/13



Data Races in C++11
• Dekker’s Example contains C++11 Data Races (on x and y ):

• “Two expression evaluations conflict if one of them modifies a
memory location and the other one accesses or modifies the
same memory location.” [intro.multithread]/3

• “The execution of a program contains a data race if it contains
two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other.”
[intro.multithread]/14

• And: “Any such data race results in undefined behavior.”

• Under SC-for-DRF, Dekker’s Example exhibits undefined
behavior, so we cannot reason about it.

The C++11 Memory Model 6/13



Data Races in C++11
• Dekker’s Example contains C++11 Data Races (on x and y ):

• “Two expression evaluations conflict if one of them modifies a
memory location and the other one accesses or modifies the
same memory location.” [intro.multithread]/3

• “The execution of a program contains a data race if it contains
two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other.”
[intro.multithread]/14

• And: “Any such data race results in undefined behavior.”

• Under SC-for-DRF, Dekker’s Example exhibits undefined
behavior, so we cannot reason about it.

The C++11 Memory Model 6/13



Data Races in C++11
• Dekker’s Example contains C++11 Data Races (on x and y ):

• “Two expression evaluations conflict if one of them modifies a
memory location and the other one accesses or modifies the
same memory location.” [intro.multithread]/3

• “The execution of a program contains a data race if it contains
two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other.”
[intro.multithread]/14

• And: “Any such data race results in undefined behavior.”

• Under SC-for-DRF, Dekker’s Example exhibits undefined
behavior, so we cannot reason about it.

The C++11 Memory Model 6/13



Fixing Dekker’s Example

• Since
• “The execution of a program contains a data race if it contains

two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other.”

atomic operations don’t participate in data races.
• ⇒ declare x , y as atomic:

std::atomic<int> x, y;
std::atomic_int x, y;
QAtomicInt x, y;

Thread A Thread B
x.store(1);
r1 = y.load();

y.store(1);
r2 = x.load();

• Warning: this is only true if you don’t specify a custom
memory ordering.

The C++11 Memory Model 7/13



The C++11 Happens-Before Relation

• “An evaluation A happens before an evaluation B if:
• A is sequenced before B, or
• A inter-thread happens before B.”

[intro.multithread]/11
• A Inter-thread happens before B ≡ “there’s a synchronisation

point between A and B”
• Almost exhaustive list:

• Thread creation synchronizes with start of thread execution.
• Thread completion synchronizes with the return of the join.
• Unlocking a mutex synchronizes with locking the same mutex.

• That’s all!!

The C++11 Memory Model 8/13



Fixing Dekker’s Example II

• Remember:
• “The execution of a program contains a data race if it contains

two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other.”

• Unlocking a mutex synchronizes with locking the same mutex.
• ⇒ Protect x , y with mutex(es):

Thread A Thread B
x_mutex.lock():
x = 1;
x_mutex.unlock();

y_mutex.lock();
r1 = y;
y_mutex.unlock();

y_mutex.lock();
y = 1;
y_mutex.unlock();

x_mutex.lock();
r2 = x;
x_mutex.unlock();

The C++11 Memory Model 9/13



SC-for-DRF Programmer’s Recipe

1 Check for and eliminate C++11 Data Races
2 Divide your source into blocks separated by synchronization

primitives
3 Do the classical SC analysis, assuming these blocks execute

atomically

The C++11 Memory Model 10/13



SC-for-DRF Programmer’s Recipe

1 Check for and eliminate C++11 Data Races
2 Divide your source into blocks separated by synchronization

primitives
3 Do the classical SC analysis, assuming these blocks execute

atomically

The C++11 Memory Model 10/13



SC-for-DRF Programmer’s Recipe

1 Check for and eliminate C++11 Data Races
2 Divide your source into blocks separated by synchronization

primitives
3 Do the classical SC analysis, assuming these blocks execute

atomically

The C++11 Memory Model 10/13



Memory Locations

• “A memory location is either
• an object of scalar type
• or a maximal sequence of adjacent bit-fields all having non-zero

width.”
• “Two threads of execution can update and access separate

memory locations without interfering with each other.”
• Example (contains four memory locations):

struct {
char a;
// ----
int b:5, c:11, :0,
// ----
d:8;
// ----
struct { int ee:8; } e;

};

The C++11 Memory Model 11/13



Memory Locations cont’d

• “Two threads of execution can update and access separate
memory locations without interfering with each other.”

• Example (Boehm): no data race under C++11, potentially
under Posix:
struct { char a; char b; } x; /*T1*/ x.a = 1; /*T2*/ x.b = 1;

The C++11 Memory Model 12/13



Memory Locations cont’d

• Example (Linux):
struct btrfs_block_rsv {

u64 size;
u64 reserved;
struct btrfs_space_info *space_info;
spinlock_t lock;
unsigned int full:1;

};

“We actually spotted this race in practice in btrfs on structure
fs/btrfs/ctree.h:struct btrfs_block_rsv where spinlock content
got corrupted due to update of following bitfield and there
seem to be other places in kernel where this could happen.”
(Jan Kara on LKML)

The C++11 Memory Model 13/13


	The C++11 Memory Model

